disease, harbours a cryptic 25.3 kbp plasmid, pXa3. A physical map of pXa3 has been constructed. Preliminary sequencing of pXa3 has revealed very high levels of homology to the gene (npn) which codes for a cold shock protein, polynucleotide phosphorylase (PNPase). Cold shock involves a sudden chilling in the surrounding environment. Hence, studies have also been initiated to investigate the effects of a fall in temperature on the physiology of the cell. SDS-PAGE of the protein preparations from X. albilineans cultures, grown at different temperatures, were analysed. Higher levels of protein of approximately 65 kDa were observed at lower temperatures. The present evidence points to PNPase production in KE6N cells. However, further tests need to be performed to confirm this. Future work would include cloning of the putative npn gene into an expression vector.

Evaluating the efficacy of a PCR-derived DNA probe for the detection of Clavibacter xyli subsp. xylidi

A.B. Sewbuckus and D. Pillay
Department of Microbiology, University of Durban-Westville, Private Bag X54001, Durban, 4000 South Africa.

Ratoon stunting disease (RSD) is one of the most widely distributed and economically important diseases of sugarcane. Diagnosis of RSD and rapid assessment of disease severity in the field have been difficult as similar symptoms may be due to various biotic and abiotic factors. The objective of this study was to evaluate the efficacy of a DNA-based probe for the detection of Clavibacter xyli subsp. xylidi (Cxx), causal agent of RSD. Random amplified polymorphic DNA (RAPD) profiles were generated from genomic DNA of various strains of Cxx. A common 124 bp polymerase chain reaction (PCR) amplification product was produced for all strains analysed. This product was gel purified, digoxigenin labelled and used as a probe in Southern hybridisation. It was found that the probe hybridised to all Cxx-derived PCR products. Future work will include cloning and sequencing of this PCR-derived DNA probe and the designing of a PCR primer. This primer will be employed in detecting Cxx in pure culture and subsequently in sugarcane sap collected from inoculated but symptomless sugarcane. This research approach may contribute to the effective control of RSD by enhancing the sensitivity, accuracy and early detection of Cxx.

Infection and colonisation pattern of Amaranthus hybrius by Alternaria alternata

J.T. Blodgett, W.J. Swart and C.M. Bender
Department of Plant Pathology, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300 South Africa.

Amaranthus hybrius has been identified as a highly nutritious food crop with potential for increased cultivation throughout the world. Endophytic and latent-infecting fungi have been shown to play an important role in the health and vigour of many plants by affecting various ecological and physiological processes. The increased utilisation of A. hybrius as a vegetable crop necessitates the understanding of these relationships. The objectives of this study were to determine how endophytic fungi infect this host and their colonisation pattern within leaf tissues. Five-month-old asymptomatic A. hybrius leaves were collected from Tempe, Free State, in 1997. For surface observations (infection patterns), leaf sections were examined using scanning electron microscopy. Tissues were fixed, critical-point dried in liquid CO2, and sputter-coated with gold. The presence of fungal mycelium within host tissues (colonisation pattern) was confirmed using light microscopy. Leaves were fixed, cleared, and stained with acetic fuchsin-malachite green. The most common fungus isolated from surface-sterilised leaf tissue was Alternaria alternata (89% of the samples). Surface examinations revealed A. alternata spores germinating on the surface and only entering leaves through stomata. The leaves had an internal net of hyphae in the mesophyll tissue growing intercellularly with no observed cell penetration or host-cell response. These results confirm that A. alternata is able to infect and colonise A. hybrius leaf tissue in a manner consistent with other endophytic or latent infecting fungi.

Differentiation of Clavibacter xyli subsp. xylidi strains by rhibotyping

P. Saraop, B. Pillay and D. Pillay
Department of Microbiology, University of Durban-Westville, Private Bag X54001, Durban, 4000 South Africa.

Intraspecific genomic relatedness of 12 Clavibacter xyli subsp. xylidi strains from different geographic origins was evaluated based on their ribosomal RNA gene restriction patterns (ribotyping). Chromosomal DNA was prepared, digested with the restriction endonucleases Aval, BglII and HindIII, blotted and hybridised with the digoxigenin-labelled 16 + 23S rRNA from Escherichia coli. The strains of C. xyli subsp. xylidi investigated produced different ribotype patterns for each strain. Ribotype patterns showed certain C. xyli subsp. xylidi strains to be more distinguishable from others. The various ribotypes obtained demonstrated the genetic divergence of the C. xyli subspecies. Some fragments appeared to be common to all strains, indicating relatedness. Ribotyping demonstrated good genetic markers for intraspecific differentiation of C. xyli subsp. xylidi strains, suggesting that it may be a useful tool for the genotypic differentiation of closely related strains. Genotypic differentiation of C. xyli subsp. xylidi by ribotyping confirms the trends observed in our laboratories using random amplified polymorphic DNA (RAPD) analysis.

Infection and colonisation of cowpea stems by Colletotrichum dematiun

J.E. Smith1,2, L. Korsten1 and T.A.S. Aveling2
1Department of Microbiology and Plant Pathology and 2Department of Botany, University of Pretoria, Pretoria, 0002 South Africa.

Colletotrichum dematiun was first recorded on cowpea stems in South Africa in 1996. Symptoms begin as small, light brown lesions which darken to a purplish-brown colour and enlarge, often girdling the stem. The aim of this research was to study the pre-penetration structures and the infection process of C. dematiun. Stems of four-week-old cowpea seedlings were painted with a spore suspension (106 conidia per ml) and covered with plastic bags to maintain high humidity. Stems were cut at various time intervals before preparation for examination under light and scanning electron microscopes. Conidia began germinating 6 h post-inoculation (hpi), forming appressoria directly or at the ends of germ tubes. Ungerminated conidia were aseptate, but two to three septa became visible upon germination. Almost all appressoria were melanised and direct penetration of host tissue had begun by 14 hpi. At 20 hpi, appressoria had formed infection vesicles in epidermal cells. Thick-knotted primary hyphae formed from these infection vesicles, entered and filled adjacent epidermal and cortical cells. The pathogen grew biotrophically during this symptomless stage of the infection process. At 40 hpi, C. dematiun produced thinner, highly branched secondary hyphae, which grew extensively intracellularly and intramurally. After approximately 48 hpi light brown lesions appeared on the stems due to the invasion by secondary hyphae, causing the degradation of cell walls and necrosis of epidermal cells. This represents the beginning of the necrotrophic phase of C. dematiun infection. Acervuli with one or two melanised setae formed from the hyphal aggregates at 65 hpi.

Registration of a fungal inoculant to prevent re-growth of cut wattle tree stumps

M.J. Morris
ARC-Plant Protection Research Institute, Private Bag X2017, Stellenbosch, 7599 South Africa.

Several of the introduced Australian Acacia species have become important invasive weeds in South Africa. There is currently a major thrust to clear mechanically some of these from water-courses and water catchment areas, where they contribute to a considerable loss of valuable water. Since the cut stumps of many of these trees sprout and re-grow into multi-stemmed trees, the stumps have to be treated, usually with a chemical herbicide. This is often not desirable, particularly along water-courses, and an alternative method was sought. In the damp forests near